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Abstract
This paper describes the system developed by Intelligent

Voice for the IberSpeech 2022 Albayzin Evaluations Speaker
Diarization and Identity Assignment Challenge. The presented
Variational Bayes x-vector Voice Print Extraction system is ca-
pable of capturing vocal variations using multiple x-vector rep-
resentations with two-stage clustering and outlier detection re-
finement and implements the Deep-Encoder Convolutional Au-
toencoder Denoiser network for denoising segments with noise
and music on files identified by a signal to noise ratio classifier
for robust speaker recognition and diarization. When evaluated
against the Radiotelevision Espanola 2022 evaluation dataset,
the system was able to obtain a diarization error rate of 35.59%
for the Speaker Diarization task and assignment error rate of
28.88% for the Identity Assignment task.
Index Terms: Speaker Recognition, Diarization, Identity As-
signment, Speech Enhancement

1. Introduction
The human voice constitutes of a multitude of acoustic fea-
tures that can provide vital cues on a person’s identity. The
significance of systems that can recognise speakers from in-
trinsic audio recordings extends beyond the commercial impor-
tance of diarization for speech technology and downstream NLP
tasks [1]. Hence, text-independent speaker diarization, recogni-
tion and verification research is gaining a lot of interest lately
from active community of researchers and academics globally,
which has nurtured several ground-breaking architectures to ef-
fectively address the “Who spoke when?” problem. However,
recognizing speakers solely based on their acoustic features is
still considered as an esoteric challenge due to the inability of
the existing systems to cope with noise, overlapping speech and
the acoustic variations in speech which can be easily influenced
by environmental, emotional and linguistic factors.

Speaker Diarization and Identity Assignment is the task
of segmenting audio segments within a conversation based on
their utterances and associating those segments with their re-
spective identities [2]. This process typically involves several
stages, namely Voice Activity Detection (VAD), segmentation
of the identified speech segments into shorter segments, ex-
traction of the speaker’s acoustic features using either i-vectors
[3], d-vectors [4], or x-vectors [5], and clustering the seg-
ments using techniques such as k-Means [6] or Agglomerative
Hierarchial Clustering (AHC) [7] to obtain accurate speaker
separation from a multi-speaker recording. Research employ-
ing speech enhancement to cancel out noise, reverberation and
normalize distortion from the noisy audio signals have also

shown improvement in this domain [8]. The accessibility to
real-world evaluation corpora such as Radiotelevision Espanola
(RTVE) 2022 [9], DIHARD-2[10], DIHARD-3 [11], CALL-
HOME [12], AMI [13], VoxCeleb [14], MultiSV [15], HI-MIA
[16] and CHiME-6 [17] have exposed the complexity of the task
for real-world conversational scenarios.

Early speaker recognition systems were based on the Gaus-
sian Mixture Model (GMM)-Universal Background Model
(UBM) approach, where the GMM of individual speakers were
adapted from the UBM trained on a large amount of unlabelled
data to represent the acoustic feature distribution of speech, and
the likelihood ratio of the test features was computed to iden-
tify the speakers present in a recording [18]. A few years later,
Kenny et. al [19] proposed the Joint Factor Analysis (JFA)
approach to improve GMM estimation by allowing the mod-
elling of interspeaker variability and compensation for chan-
nel/session variability in the context of high-dimensional GMM
supervectors [19].

With the advent of i-vectors [3], unique fixed length em-
beddings extracted from the recordings could be directly used
for identifying speakers based on their voices using cosine sim-
ilarity scoring [20]. Linear Discriminant Analysis (LDA) and
Nuisance Attribute Projection (NAP) techniques were intro-
duced to cope with unwanted variations that affected i-vectors
due to a mismatch of linguistic content and recording channel
information between segments of speech spoken by the same
speaker, demonstrating an improved performance [20]. Proba-
bilistic LDA (PLDA), originally introduced by Price and Gee
for facial recognition [21], has emerged as a powerful tool for
speaker verification capable of generating well-calibrated like-
lihood ratios between the vectors [22]. Kenny [23] was amongst
the pioneers for implementing PLDA in the i-vector space for
modelling channel variability [23].

Deep Neural Network (DNN) based feature vector extrac-
tors have shown an improved performance for speaker recog-
nition and diarization tasks compared to the earlier systems
[24, 25, 26, 27, 28]. For many years, DNN-based i-vector sys-
tems implementing PLDA scoring were regarded as the state
of the art in the speaker verification domain. Recently, x-
vector based systems which operate by extracting x-vectors
from speech segments, performing LDA and using PLDA clas-
sifiers to perform a likelihood ratio test between the speakers
have observed superior performance on speaker recognition and
diarization across different acoustic channels [5, 29, 30, 22, 31].

Also, systems implementing the Weighted Prediction Er-
ror (WPE) speech dereverberation algorithm to cancel out re-
verberation and background noise[8] for generating clean audio
signals and better speaker embeddings have demonstrated im-



pressive performance in the speaker verification domain where
the waveform amplitude distribution analysis method was em-
ployed to estimate the Signal to Noise Ratio (SNR) of the real
speech recordings, whereby degraded and noisy audio signals
were processed by the Virtual Acoustic Channel Expansion
(VACE)-WPE and speaker embeddings were extracted using a
pre-trained Resnet-34 Deep Speaker Embedding (DSE) model
employing dereverberation without Task specific Optimization
(TSO), characterized by prefix Drv [8].

This paper extends our Variational Bayes x-vector Voice
Print Extraction (VBxVPE) [1] research by implementing
the Deep-Encoder Convolutional Autoencoder Denoiser (DE-
CADE) speech enhancement model [32] to cancel out noise,
music and reverberation from the files identified by a SNR
classifier for effective speaker diarization and identity assign-
ment. The VBxVPE system is capable of capturing an in-
dividual speaker’s speech variability resulting from different
speaking styles and varying vocal effort using multiple x-vector
representations associated with a speaker. The novelty of our
work lies in the core-extraction procedure where we refine the
x-vectors by implementing a robust outlier detector followed
by re-clustering of the vectors using the Hierarchical Density-
Based Spatial Clustering of Applications with Noise (HDB-
SCAN) algorithm [33], to obtain refined clusters from which
the centre of the refined clusters are extracted as the cores repre-
senting the different acoustic variations in speech of the speaker
of interest. The core representations are then stored in a vector
database, which supports semantic vector search using cosine
similarity to identify the closest match between the enrolled and
test speaker cores.

The rest of the paper is organised into three distinct sec-
tions. Section 2 provides the methodology and description of
the implemented system; information on the benchmark dataset,
reported evaluation metrics and discussions are provided in Sec-
tion 3, followed by the conclusions in Section 4.

2. System Description
2.1. Data Preprocessing

The audio files were provided in the Advanced Audio Coding
(AAC) file format sampled at 44100 Hz with two channels, by
default for both enrolment and inference. These were down-
sampled to 8 KHz, a standard sample rate for recording the hu-
man voice, and converted to a mono channel WAV file format
using the Fast Forward Motion Picture Experts Group (FFM-
PEG) Python library [34]. The WAV files were then used for
either enrolment (Section 2.7) or evaluation (Section 2.8) as per
the RTVE 2022 [9] evaluation set specifications [2].

2.2. SNR classification

A Spleeter [35] based SNR classifier was implemented to detect
audio files containing excessive noise and music. Spleeter [35]
is a powerful tool that can separate vocal and music accompani-
ment in music audio. Using functionalities from the numpy [36]
Python library, simple smoothing was applied to the accompani-
ment audio signals after normalization in the range [0,1]. Then
the average of the energies was calculated from normalized ac-
companiment audio signals to obtain a SNR between 0 and 1.
Based on our experimental observations through trial and error,
audio files containing a SNR value greater than 0.2 obtained
from the accompaniment audio signals benefitted from speech
enhancement performed by DE-CADE [32].

2.3. Speech Enhancement

DE-CADE is a two-stage DNN architecture for speech enhance-
ment that outperforms the current state of the art systems in
this domain [32], was used to generate clean audio signals
from the noisy and distorted audio recordings provided in the
evaluation set. The implemented deep convolutional denoising
autoencoder-based speech enhancement network [32] operates
by performing denoising first in the frequency domain stage us-
ing the magnitude spectrum as a training target followed by de-
noising and speech reconstruction in the temporal domain in the
second stage.

Speech enhancement was performed for all 38 files from
the evaluation set and VAD was always performed on the eval-
uation files processed with DE-CADE. However, the SNR clas-
sifier described in Section 2.2 was used to determine whether
to use files processed by the DE-CADE speech enhancement
algorithm or not as input audio for the rest of the inferencing
pipeline.

2.4. VAD and X-Vector Extraction

An energy based VAD system operates on the audio files pro-
cessed by DE-CADE to get rid of non-speech segments within
the audio that might lead to noisy x-vectors. 256 dimensional
x-vectors were extracted from the segments specified by VAD
using a pre-trained ResNet-101 8 KHz network [31]. The ex-
tracted x-vectors were reduced to 128 dimensions using LDA
dimensionality reduction for further processing.

2.5. Speaker Diarization

VBx diarization [31] was chosen as the reference architecture
for speaker diarization due to its superior performance on three
of the most popular datasets for evaluating diarization: the
CALLHOME [12], AMI [13] and DIHARD-2 datasets [31].
The AHC algorithm [7] used by the VBx diarization system
[31] was replaced by a greedy clustering algorithm that oper-
ates by calculating the cosine similarity between a vector and
every other x-vector that appears on the sequence after the ref-
erence x-vector. The algorithm scans for the drop in similarity
below the threshold of 60% which was defined based on our ex-
perimental observations between the vectors and forms a mini
cluster and then starts clustering again with the next x-vector
in the sequence as a reference vector. Once all the x-vector
clusters are obtained, similar clusters are merged based on the
similarity between the reference x-vectors. The implemented
greedy algorithm runs 1.8 times faster than AHC and improves
the Diarization Error Rate (DER) by 0.91% [31] when eval-
uated against the evaluation set of the DIHARD-3 Challenge
[11]. Then, a PLDA model pre-trained on a large number of
speaker-labeled x-vectors [31] scores the obtained clusters to
verify the likelihood ratio between them [22], thereby prepar-
ing the final diarization output detailing who spoke when in the
audio file.

2.6. Core Extraction

Core Extraction also known as Voice Print Extraction can be
regarded as the process of generating a distinct vocal signature
from the acoustic features present in a person’s speech. For ev-
ery speaker recognized, the core extraction is performed in two
stages, Outlier Detection and then HDBSCAN Clustering[33].

Initially, all the x-vectors representing a speaker are
grouped together and investigated for outlier detection where
the system calculates a cosine similarity matrix between all the



Figure 1: Enrolment Pipeline

x-vectors and eliminates any noisy x-vectors. Noisy x-vectors
are identified based on the cosine similarity measure and the
vectors that cannot demonstrate a strong association with any
of the major clusters are discarded. The remaining vectors are
then processed with HDBSCAN clustering with an aggressive
setting by enabling the ’allow single cluster’ parameter [33] i.e.
the x-vectors are re-clustered. This will yield a minimum of
one cluster. The number of clusters indicates the distinct speak-
ing styles captured from a speaker’s vocal features, enabling the
system to capture and identify the speaker of interest across a
variety of domains. Finally, the centres of the obtained clus-
ters (simple centroid calculation) are extracted and stored as the
voice print of the speaker.

2.7. The Enrolment Pipeline

Based on the audio files provided for enrolment by the
RTVE2022 dataset [9], 74 speakers were enrolled from audio
files containing speech from the speaker of interest (∼30 sec-
onds per speaker). The total enrolment time was reported as 3
minutes and 13 seconds.

Fig. 1 shows the enrolment pipeline for enrolling the
speakers for performing speaker recognition with the proposed
VBxVPE system. The enrolment procedure commences by ac-
cepting the audio and label for the speaker of interest as meta-
data.

Since the enrolment files only contained clear speech seg-
ments from the speaker of interest, diarization and speech en-
hancement was not performed in the enrolment pipeline, only
in the evaluation pipeline. After VAD and x-vector extraction
is performed as described in Section 2.4, the voice print for
the speaker of interest is extracted from the file containing the
speaker based on the metadata provided as described in Section
2.6.

After extracting the cores as described in section 2.6, core
refinement is performed by comparing the obtained voice prints
against each other using cosine similarity and discarding the
cores with similarity greater than 85%, which is the ideal thresh-
old determined by trial and error to prevent duplication. All
unique voice prints derived from the acoustic features consti-
tuting the speaker’s voice are then enrolled in the vector search
database along with a unique speaker id.

2.8. The Evaluation Pipeline

For evaluation of the speaker identity recognition system, the
evaluation set of the RTVE 2022 dataset [9] contained 25 hours
of audio with overlapping speech segments, background mu-

Figure 2: Evaluation Pipeline

sic and frequent speaker changes. A SNR classifier described
in Section 2.2, was implemented to determine the levels of
noise and music contained in the audio files. Based on a SNR
threshold of 0.2 decided by trial-and-error, the audio files with a
SNR value of greater than 0.2 were processed by the DE-CADE
speech enhancement model [32] to further clean the noisy audio
signals.

Fig. 2 presents the evaluation pipeline for the VBxVPE
system. The developed speaker recognition system operates on
segments of audio recordings containing speech identified by
VAD. After extracting the x-vectors from the audio segments
containing speech, speaker diarization facilitates the grouping
of x-vectors associated with the speakers identified.

For every speaker identified by diarization, the core/s is ex-
tracted from the pool of x-vectors associated with the speaker as
explained in Section 2.6. The cores are then searched across the
vector search database which is capable of performing semantic
vector search based on cosine similarity. Speakers are identi-
fied if there is a match greater than the identification threshold
of 80%, determined through trial-and-error experiments, with
any enrolled core representing the speaker in the vector search
database. The final output was provided in the Rich Transcrip-
tion Time Marked (RTTM) file format.

3. Results and Discussions
The total processing time for all the experiments were identi-
cal and took approximately 5 hours to process the 38 files con-
taining 25 hours of speech comprising the RTVE 2022 evalua-
tion set [9]. X-vector extraction was performed on an NVIDIA
GeForce GTX 1080 Ti GPU whereas the rest of the processes
were executed on a single core 64-Bit CPU with Intel Xeon
2.20GHz processor and 128GB RAM.

The Albayzin Evaluation Speaker Diarization and Identity
Assignment Challenge (SDIAC) is comprised of two sub tasks:
Speaker Diarization and Identity Assignment. The Speaker Di-
arization task was compulsory and required the participants to
separate and group the recordings based on an unknown identity
whereas the optional Identity Assignment task required the par-
ticipants to retrieve the speaker’s identity and assign names to
the diarization labels [2]. The evaluation metrics were reported
in terms of DER for the Speaker Diarization task and Assign-
ment Error Rate (AER) which is a slightly modified version of
DER for the Identity Assignment task [2].

A total of 11 systems were submitted for the challenge



Table 1: System Results

System threshold

DER
(Speaker
Diariza-
tion)

AER
(Identity
Assign-
ment)

SDIAC TEAMIV p–c1 75% 45.92% 1191.64%
SDIAC TEAMIV–l1 75% 38.91% 153.36%
SDIAC TEAMIV–l3 75% 40.74% 185.42%
SDIAC TEAMIV–l4 80% 35.82% 36.07%
SDIAC TEAMIV–l8 80% 37.20% 44.34%
SDIAC TEAMIV–l9 80% 35.59% 28.88%

for experimenting with various conditions and thresholds of
the system out of which 6 major systems that improved the
performance overtime are discussed as shown in Table 1.
The primary system submitted to the challenge identified as
‘SDIAC TEAMIV p–c1’ operated on audio without speech en-
hancement with speaker identification threshold of 75%, where
the DER was reported as 45.92% and AER was reported as
1191.64%. The system observed a very high false alarm rate
due to the inaccuracy of the implemented VAD algorithm which
identified segments with only music as speech. Hence, speech
enhancement using DE-CADE was implemented to filter out
7,697 seconds of noise and music from the recordings leading
to an improved performance as evidenced by the decrease in
DER and AER in the subsequent systems.

Two additional systems implementing DE-CADE for
speech enhancement with a speaker identification threshold of
75% were submitted for evaluation. SDIAC TEAMIV–l1 im-
plemented DE-CADE for VAD only and inferencing was per-
formed on audio recordings without speech enhancement based
on the speech segments identified by VAD. This system ob-
served a DER of 38.91% and AER of 153.36% . The system
SDIAC TEAMIV–l3 implemented DE-CADE for inferencing
and exhibited 40.74% DER and 185.42% AER.

SDIAC TEAMIV–l1 and SDIAC TEAMIV–l3 demon-
strated better performance compared to the primary system, the
false alarm rate was still relatively high and hence the system
was experimented with several speaker identification thresholds
to tune the system with an ideal threshold for the task.

Out of the various speaker identification thresholds, the
systems SDIAC TEAMIV–l4 and SDIAC TEAMIV–l8 used
speaker identification threshold of 80% and demonstrated su-
perior performance compared to the systems executing al-
ternative thresholds. The DER and AER were reported as
35.82% and 36.07% respectively for system Speaker Diariza-
tionIAC TEAMIV–l4, which only used speech enhancement for
VAD. Whereas the system SDIAC TEAMIV–l8 processed files
produced by DE-CADE speech enhancement for inferencing
and observed DER of 37.20% and AER of 44.34%.

Upon detailed analysis of the results, it was observed
that the DE-CADE speech enhancement algorithm only im-
pacted the performance positively when there was excessive
noise or music in the evaluation audio. Hence, the system
SDIAC TEAMIV–l9 implemented a SNR classifier to decide
whether to employ DE-CADE speech enhancement algorithm
or not on the input audio signals for inferencing based on the
SNR threshold of 0.2 and hence the optimal results were ob-
tained as 35.59% DER and 28.88% AER.

4. Conclusions
The extraction of multiple x-vectors to capture individual
speaker speech variability resulting from different speaking
styles and varying vocal effort, followed by the use of outlier
detection and two-stage clustering for obtaining distilled voice
prints of the speakers of interest, underpins the novelty of the
paper. The system also implements the DE-CADE speech en-
hancement algorithm to clean degraded audio signals identi-
fied by the SNR classifier for effective speaker diarization and
recognition. The results obtained on the RTVE 2022 dataset
with the implemented system show promise. In future work,
we aim to evaluate the system using larger and more challeng-
ing datasets such as VoxCeleb1 & VoxCeleb2 [14], MultiSV
[15] and HI-MIA [16].
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