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Abstract

In this paper we describe the ViVOLAB system for the
IberSPEECH-RTVE 2022 Speech to Text Transcription Chal-
lenge. The system is a combination of several subsystems de-
signed to perform a full subtitle edition process from the raw au-
dio to the creation of aligned subtitle transcribed partitions. The
subsystems include a phonetic recognizer, a phonetic subword
recognizer, a speaker-aware subtitle partitioner, a sequence-to-
sequence translation model working with orthographic tokens
to produce the desired transcription, and an optional diarization
step with the previously estimated segments. Additionally, we
use recurrent network based language models to improve re-
sults for steps that involve search algorithms like the subword
decoder and the sequence-to-sequence model. The technologies
involved include unsupervised models like Wavlm to deal with
the raw waveform, convolutional, recurrent, and transformer
layers. As a general design pattern, we allow all the systems to
access previous outputs or inner information, but the choice of
successful communication mechanisms has been a difficult pro-
cess due to the size of the datasets and long training times. The
best solution found will be described and evaluated for some
reference tests of 2018 and 2020 IberSPEECH-RTVE S2TC
evaluations.

Index terms should be included as shown below.

Index Terms: Automatic speech recognition, Recurrent neural
networks, Sequence-to-sequence models

1. Introduction

The advances in automatic speech recognition (ASR) in recent
years and the current quality of state-of-the-art systems have
made possible an increasing number of applications like auto-
matic subtitling of multimedia contents, audio indexation and
metadata generation among others. In this context, the 2018,
2020, and 2022 IberSPEECH-RTVE S2TC evaluations have
contributed to establishing baselines for ASR in Spanish [1].
The challenge proposed the extraction of text content from sev-
eral audios from the broadcast domain to assist metadata extrac-
tion and subtitling specialists. The difficulty of the tasks ranges
from good quality of sound programs, turn-based interviews,
and debates to very challenging noisy scenarios with speech
overlap and music and noise distortions. In addition to the noise
in broadcast audio, there are more challenges like spontaneous
speech and different Spanish accents.

The ViVoLAB system combines several subsystems for a
global design objective of providing a full subtitle edition pro-
cess from the raw audio to the creation of aligned subtitle tran-
scribed partitions. The subsystems include the following parts.
A phonetic recognizer that takes the waveform and outputs a
sequence of recognized phonemes. A phonetic subword recog-
nizer, based on the tokenization of phoneme sequences to form
groups of one or more phonemes, and allows the capture of con-

text and co-articulation more effectively than the phoneme rec-
ognizer. A speaker-aware subtitle partitioner, which has been
trained with subtitles and segments from audio datasets to pre-
dict the limits of a subtitle from the raw audio and the previous
subsystem outputs. The final ASR module in this work is a
sequence-to-sequence translation model working with the pre-
vious subsystems as input and the orthographic tokens as out-
put and will produce the desired transcription estimation in a
recursive feeding process. Optionally, a diarization step with
the previously estimated segments can be applied using any of
the recent systems developed in our group [2]. Additionally,
we use recurrent language models to improve results for steps
that involve search algorithms like the subword decoder and
the sequence-to-sequence model. In general, we allow all the
systems to access previous system outputs or access their in-
ner layers. Nevertheless, the choice of successful communica-
tion mechanisms has been a difficult process due to the size of
the datasets and long training times. The best solution found
will be described and evaluated for some reference tests the
IberSPEECH-RTVE S2TC evaluation.

This paper is organized as follows. In Section 2 we review
state-of-the-art concepts referenced in our proposal. Section 3
describes in more detail all the subsystems. Experimental re-
sults are shown in section 4 and finally, conclusions are pre-
sented.

2. State of the art

The first systems that incorporated neuronal networks in
speech recognition were hybrid systems [3] which still needed
the sequence modeling provided by Hidden Markov Models
(HMMs). The systems increased in size and depth of the net-
works involved [4], but the basic units were phonemes and the
lexicon stored in a dictionary of prior knowledge, which re-
quired expert annotation. The performance was later improved
by modeling the sequence using recurrent neural networks in-
stead of HMMs [5]. Although the units were still phonemes,
the Connectionist temporal classification (CTC) as loss function
[6] to optimize the system had the advantage of simplifying the
processing pipeline both at training and testing time.

The next step towards fully automated training was pro-
posed in [7] where the transcription in characters was the ob-
jective of the network. The transcription to letters or charac-
ters had the advantage of a simple development of the systems
but the size of the units started to grow progressively, to cap-
ture context-dependent features in specialized units [8] or even
words [9][10]. Word models provide good performance but they
are less flexible, for example, to define new words. The use of
word piece selection also called tokens or subword units has
been proven to be a better strategy both in terms of flexibility
and performance [11]. This type of technique has been used
successfully in large-scale language models using transform-



ers. The type of backbone architecture of ASR systems has
also evolved during the last decade with examples of recurrent
neural networks [5], convolutional networks [12], and more re-
cently transformers [13]. Finally, the use of unsupervised data
[14] or partially labeled data [15][16] has been shown in recent
works to improve the performance of the systems when unla-
beled data are available. Unlabeled data [14, 17, 18] can be used
to learn feature extractors, which take the waveform directly and
do not need a frequential analysis designed by an expert, with
the advantage that this process only requires large amounts of
data which are easy to collect nowadays. To train these systems
without labels some strategies have been proposed like predict-
ing which segment continues a previous one [19], or predicting
the labels of a previous clustering process [17].

shared information: front-end, phoneme, subword, segments.
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Figure 1: Vivolab system overview.

3. System description

The ViVoLAB system is a composition of some modules in-
teracting as shown in Figure 1. We allow the systems to ac-
cess previous system outputs or access their inner layers. This
may help the development of a complex task like this since they
can be trained and evaluated consecutively. In addition, hav-
ing access to useful internal variables and intermediate results
provides probe points in the system. The following sections de-
scribe each module in more detail.

3.1. Phoneme recognition

The phonetic recognition system takes the raw audio samples
at 16kHz and outputs phoneme posterior probabilities every
10ms. The number of classes is 27 including a class for silence
and Spanish language phonemes [20, 21]. During the training
phase, Kaldi aligned phonetic transcriptions [22], were used as
target labels for a cross-entropy loss function. The training pro-
cess consisted in several iterations where only the best aligned
segments were used to train the next model.

In table 1, we can see a summary of the type of layers and
parameter size for each system. Other layers like ReLU ac-
tivations or batch normalization layers are neglected for clar-
ity. The phoneme network, net_ph, first uses the unsupervised
model Wavlm [18] to extract feature vectors every 20ms. The
model is WavLM Base+ which has 12 Transformer encoder lay-
ers with 8 attention heads and represents the signal with inter-
nal vectors of dimension 768. The output can be considered a
down-sampled version with factor 2 with respect to the labels
since there is a representation vector every 20ms. The hidden
inputs and final layer of the Wavlm model are combined and
down-sampled again with a factor of 2 to achieve higher com-
putation speeds since the LSTM is operating at a factor of 4
times lower rate than in a standard speech application This is
done in a Conv1d block with two layers and an output dimen-
sion of 1024. Then a two-layer bidirectional LSTM is applied
to obtain 2048 channels, which are then linearly combined to
the final embedding. To evaluate the cost we need to upsample

Table 1: Description of the layers used in the different subsystem net-
works. For each network, the main parts are listed with details about
their configuration output size and the number of parameters. The time
length T indicates the reference number of frames with a window ad-
vance of 10ms and N indicates the maximum sequence length. *Note
that the Wavlm parameters are not added to the total number.

System Layer Comment Size Params
net_ph Input Wavlm 13x 768 x T/2 94.7TM*
2xConvld down. x2 1024 x T/4 9.4M
2xLSTM  bidirectional 2048 x T/4 40.0M
Linear dim reduction 512x T/4 1.0M
Linear up x4 512xT 1.0M
Linear logits 27xT 14.9k
(Total) 51.4M
net_unit Input Wavlm 13 x 768 x T/2 94.7M*
2xConvld down x2 1024 x T/4 9.4M
4xLSTM  bidirectional 2048 x T/4 109.1M
Linear dim reduction 512 x T/4 1.0M
Linear up x4 512xT 1.0M
Linear logits 8000 x T 14.9k
(Total) 120.5M
net_asr Input Wavim 13x 768 x T/2 94.7TM*
2xConvld down x2 1024 x T/4 9.4M
Linear ph-+unit 1024 x T/4 3. M
2xEncoder FF+MHA 1024 x T/4 14.7M
Embedding prev. out 1024 x N 8.2M
6xDecoder FF+MHA+xMHA 1024 x N 62.9M
Linear output 8000 x N 8.2M
(Total) 107.1M
net_Im Input - 8000xN -
Embedding input 300xN 2.4M
4xLSTM  unidirectional 1500xN 64.8M
Linear output 8000xN 2.4M
(Total) 70.0M
net_seg Input - 13x 768 x T/2 94.7TM*
2xConvld down x2 1024 x T/4 9.4M
Linear ph+unit 1024 x T/4 3. M
4xEncoder FF+MHA 1024 x T/4 16.8M
Linear logits 2x T4 2.0k
(Total) 29.9M

a factor of 4 this signal. For example, if the original signal cor-
responds to 7" labels every 10ms, the output of the LSTM will
have T'/4 frames, then the need for an upsampling step.

The objective of the next Linear layer is to obtain a final
embedding dimension of 512 at the label rate, then we use a
linear layer to project the data to dimension 512 - 4 and we re-
shape the output of the layer to a tensor of shape 51227 /424,
where the final dimension is the upsampling factor. Finally, we
reshape the last two dimensions together to interleave the new
4 samples per original sample to obtain 512z [23]. The in-
terleave will be correct if the factor is the last dimension since
torch and numpy are row-major. For convenience, these reshap-
ing operations are done in a single step after the linear layer.

The output of the Linear layer after the LSTM is used as
output for other systems since it corresponds to the slower rate
of a vector every 40ms, a factor 4 of reduction, which can help
the rest of the systems to reduce computation time. Neverthe-
less, if we desire a prediction of the recognized phonemes we
will continue with the final linear layer to obtain the predic-
tions for the phoneme classes every 10ms. In the top part of
Figure 2, we can observe the log-posterior probabilities of an
example short segment and we can that thanks to good noise
conditions we can see a clear path to align this sequence to the
best phonemes.



3.2. Phonetic subwords

In this system, we define a higher level of abstraction in the
ASR. Now the objective is to recognize subword units by using
the raw input processed by the Wavlm network and the support
of the previous phoneme recognizer. The subwords are auto-
matically obtained using a BPE(Byte Pair Encoding) tokenizer
[24] with the phonetic transcription of the training data instead
of standard text. The objective is to control the number of units
and the quality of the representation since, as we have seen in
Figure 1, this module is not providing the final output but inter-
mediate useful information. Then the recognition labels are now
a set of subword units, in this work 4000 different combinations
with begin and end of word special markings. Given the large
number of units, many frequent words are described as a unique
unit. As an example here we display the units corresponding to
the phonetic transcription of some random words:

e ahora: _aora_ (frequent words are complete units)
e circulaba: _-Tirkul aBa._ (most verbs share suffixes )
e parametrizacion: par am etr iTaTjon.

The architecture of the subword network is very similar to
the phonetic network and the training process is simplified since
this type of subword unit can use the same alignment previously
obtained for the phoneme model. It also operates the LSTM ev-
ery 40ms which alleviates its high computational cost, since it
has four layers. In this case, the LSTM input is the combina-
tion of a hidden vector from the net_ph and the output of the
convolutional downsampling of the Wavlm output, which was
also done in the previous module. The motivation for the ex-
tra effort of processing again the output of the Wavlm to have
multiple combinations of the Wavlm hidden layers is related to
the findings exposed in the original paper [18] where the au-
thors show that different tasks can have different combinations
of weights. Then, the objective here is to try to capture a new
level of abstraction in the recognition process, the formation of
words from subword units. The output of this system to the next
module can be the hidden vectors after the LSTM with a lower
rate or the final decoded unit sequence.

Finally, the output of this subsystem can be used by the
next module, the word recognizer, but there is a problem that
is related to the type of model we have decided for the ASR,
a sequence-to-sequence. The problem is due to the process of
autoregressive generation of the output, which in extreme situ-
ations, high noise or unseen situations, the generation process
can fall into loops that generate many insertions and degrade
the performance. To alleviate this issue, some proposals have
been added to the system during the development of the chal-
lenge. The one that affects this module is to define an additional
state for the subword units similar to a HMM (Hidden Markov
Model) and also related to the null state in CTC models, an end-
ing state is added to all the subword units. The total number of
classes in this module is 8000. The ending state is mandatory
to finish a subword and it is visited only once (it does not have
self-transition). This way by looking at the ending state visits
while decoding, we can have better information about the lim-
its of the units. Before this modification, the subword system
was not able to tell the difference between pronouncing several
consecutive times the same word. At the bottom of Figure 2, we
can see the log-posterior probabilities of the same example short
segment where we can see that the frequent complete words are
easily aligned and that the final state learns to be activated only
once at the end of each unit, helping with the segmentation and
search process.

Figure 2: Examples of phoneme (top) and subword (bottom) recog-
nizer log-posterior probabilities obtained every 10ms for the first tran-
scribed segment of RTVE 2018 audio SG-20180520 with Spanish tran-

scription: ’saber y ganar’. The silence model is °. and symbol '#’

indicates end state of subword.

3.3. Orthographic token based recognizer

The ASR core subsystem is the sequence-to-sequence network.
The architecture is displayed in Table 1 and we can see that the
first layers to process the output of Wavlm and the connection
to previous subsystems are similar to what we have seen in the
subword network. They integrate all available information so
that the transformer encoder can process it. The low-rate em-
beddings of the phoneme and unit networks are concatenated
to the downsampled signal coming from the Wavlm network.
Then they are projected to a lower dimension of 1024 so that the
transformer can operate with more moderate dimensions and at
a lower rate which helps the computational cost. This system
uses 8k tokens learned with the BPE tokenizer. We have tested
two types of text preparation to learn the tokenizer and therefore
the target labels: the first one had minimal processing and was
able to include punctuation symbols and rich text format, the fi-
nal system selected for this paper had a better performance since
we applied several steps of text normalization and final text has
accent marks and all other punctuation symbols are removed,
numbers and roman numbers are converted to text among other
operations.

The transformer encoder layers are composed of two
blocks: Feed-Forward block and MHA block (Multi Head Self-
Attention) with 12 heads [25], both of them use residual connec-
tions to modify the signal iteratively. The encoder has 2 layers
and the decoder 6 layers that take as input the encoder output
and the autoregressive output which is encoded in an embed-
ding layer. The decoder layers have a Feed-Forwad block and
two MHA blocks one for the encoder output and the other for
the iterative processing of the prediction starting from the pre-
vious output. This last MHA has to be causally masked to avoid
future information finding a trivial path to the loss function.

To fight the loop generation problem and provide a more
stable reference to the decoder part of the transformer we pro-
pose a second alternative to the seq-to-seq network. The idea



is to use a decoded subword sequence as additional input to
the the decoder. The example in Figure 2 shows us that such
best sequence decoding: ’_saBer- _i- _Ganar_’, could bring use-
ful information to the system, and now the decoder can fix the
attention in this sequence of tokens in addition to information
captured by the encoder. To incorporate the information into the
new version of the system we add a third MHA cross-attention
module that takes the whole input to produce the outputs sim-
ilarly to the MHA that takes the encoder output. We will refer
to these models as ’net_asr (a)’ the previous model and ’net_asr
(b)’ for the model that takes the decoded output and has a third
cross-MHA.

3.4. Subtitle partitioner

The segment prediction system has the objective of providing
useful segments for the ASR operation and, optionally, a former
diarization step. Thanks to this task, the system is closer to
a fully automatic subtitle operation. The segments generated
help the ASR decoder to avoid a sliding window scheme since it
can process the segments provided by the segmentation module
with defined limits.

The system is similar in the inputs to the ASR module. It
takes the Wavlm representation, the phoneme hidden variables,
and the unit recognizer low-rate hidden variables. With this in-
formation, it applies only the decoder steps of a transformer
and finally produces a binary output predicting if the frame cor-
responds to the same segment or a different segment. To train
the system we generate three types of a situation artificially: the
segment does not have a segment frontier and it is speech, the
segment is fully noise and discarded, and the segment has an op-
timal subtitle cut that needs to be predicted. The training data to
solve these situations can be generated artificially by collating
different segments from the database or predicting the end of
the subtitle in longer audio from a given position since we have
that limit in the database. The limits obtained with this method
are used by the ASR to generate the decoded words for each
segment y a fully automatized process.

3.5. Language model

As language model, we use a simple network based on a causal
four layer LSTM trained using the set of tokens previously ob-
tained for the seq-to-seq model. The model is later applied dur-
ing the search process and mixed with a weight of 0.08 meaning
that we have not achieved significative gains by using the lan-
guage model.

4. Experiments

The IberSPEECH-RTVE 2018, 2022, and 2022 challenge
datasets have been released by the collaboration of Corpora-
cion Radio Television Espafiola (RTVE), the main public ser-
vice broadcaster in Spain, and the RTVE Chair at the Univer-
sity of Zaragoza [1]. They are a collection of different shows
from various styles and genres. The training material comprises
around 500h and two dev partitions with 57h and 15h. In 2022
an additional training set has been released with 300h. The tran-
scriptions come from the broadcast subtitles and they are some-
times misaligned or the text is not exact but a human interpreta-
tion.

The acoustic models have been trained using several
datasets: Albayzin [26], a phonetically balanced corpus with
12h, Speech-Dat-Car [27], a corpus recorded in a car in differ-
ent driving conditions 18h, the Domolab [28] corpus, recorded

Table 2: WER % of the submitted systems evaluated on RTVE2018
RTVE2020 RTVE2022 sets.

System RTVE2018 RTVE2020 RTVE2022

net_asr (a)  17.57 22.13 20.87
net_asr (b)  16.49 21.86 20.57

in a domotic environment 9h length, TCSTAR [29] transcrip-
tions of Spanish parliament sessions 111h and Commonvoice-
es [30], a multilingual corpus that employs crowdsourcing for
both data collection and data validation, 400h. RTVE 2018
train, dev1l, dev2 RTVE 2022 train more than 800h. In addition,
more training material was added from a diverse scrap of on-
line videos and social networks for a total of 10kh. The training
data is later filtered after performing forced alignment and se-
lecting transcribed segments with sufficient quality for training.
To augment data MUSAN [31] and other noises and music data
downloaded from the Internet were used. Artificially generated
impulse responses were used to simulate different acoustic envi-
ronments [32]. The language model was trained using Spanish
Wikipedia, RTVE challenge provided subtitles, and text news
obtained from different Spanish newspapers. In Table 2 we
show average results for all challenges for the two proposed
systems. We observe the system using an extra cross-MHA per
decoder layer using the best-decoded unit sequence is the best
performing system. Results are encouraging since their analysis
has shown that we have critical points to improve, especially in
the segment generation which is now deleting a great amount of
audio with transcription and that generates an excessive number
of deletions.

The computational cost of the system is smaller than mod-
els of similar layers and sizes in the number of parameters since
all the sequence models operate at a factor of 4 smaller rates.
The module that consumes most of the time is the net_asr trans-
former. We have measured on a Intel(R) Xeon(R) Silver 4210R
CPU @ 2.40GHz with a Nvidia RTX3090 graphic card and the
computation time to duration ratio is smaller than 7% for both
net(a) and net_asr(b).

5. Conclusions

In this paper, we have described the ViVoLAB system for the
S2TC IberSPEECH-RTVE 2022 challenge. The system is a full
ASR engine that takes a raw 16kHz signal and produces dif-
ferent outputs from phoneme level recognition, subword units,
subtitle estimated limits, and estimate the sequence of words.
The key aspects of the systems are modularity, which will allow
a continuous module upgrading policy in the future to bene-
fit the rest of the subsystems, the access to useful probe infor-
mation during the development of the model, which also helps
other related applications like subtitle partitioning and diariza-
tion, the specific design which tries to reduce the impact of gen-
eration loops in seq-to-seq architectures by using end state in
subword units and, optionally, the decoded subword sequence
as additional input to the transformer architecture, fast opera-
tion at search time which can achieve lower than 7% computa-
tion to duration time ratios. The system has been evaluated in
2018, 2020, and 2022 S2TC IberSPEECH-RTVE evaluations.



6. Acknowledgements

This work was supported in part by the European Union’s
Horizon 2020 research and innovation program under

Marie Sktodowska-Curie Grant 101007666;

in part by

MCIN/AEI/10.13039/501100011033 and by the European
Union “NextGenerationEU” / PRTR underGrants PDC2021-
120846-C41 PID2021-1260610B-C44, and in part by the Gov-
ernment of Aragon(GrantGroup T36 20R).

[1]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

7. References

E. Lleida, A. Ortega, A. Miguel, V. Bazan-Gil, C. Pérez,
M. G6mez, and A. de Prada, “Albayzin 2018 evaluation: The
iberspeech-rtve challenge on speech technologies for spanish
broadcast media,” Applied Sciences, vol. 9, no. 24,2019. [Online].
Available: https://www.mdpi.com/2076-3417/9/24/5412

I. Vifals, P. Gimeno, A. Ortega, A. Miguel, and E. Lleida,
“ViVoLAB Speaker Diarization System for the DIHARD 2019
Challenge,” in Proc. Interspeech 2019, 2019, pp. 988-992.

H. A. Bourlard and N. Morgan, Connectionist Speech Recogni-
tion: A Hybrid Approach. USA: Kluwer Academic Publishers,
1993.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kings-
bury, “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Sig-
nal Processing Magazine, vol. 29, no. 6, pp. 82-97, 2012.

A. Graves, “Sequence transduction with recurrent neural net-
works,” in In Proceedings of the 29th International Conference
on Machine Learning (ICML 2012), 2012.

F. S. G. F. Graves, A. and J. Schmidhuber, “Connectionist tem-
poral classification: Labelling unsegmented sequence data with
recurrent neural networks,” in In ICML, 2006, 2006.

A. Graves and N. Jaitly, “Towards end-to-end speech recognition
with recurrent neural networks,” in International conference on
machine learning. PMLR, 2014, pp. 1764-1772.

H. Liu, Z. Zhu, X. Li, and S. Satheesh, “Gram-ctc: Automatic
unit selection and target decomposition for sequence labelling,” in
International Conference on Machine Learning. PMLR, 2017,
pp. 2188-2197.

H. Soltau, H. Liao, and H. Sak, “Neural speech recognizer:
Acoustic-to-word Istm model for large vocabulary speech recog-
nition,” arXiv preprint arXiv:1610.09975, 2016.

K. Audhkhasi, B. Ramabhadran, G. Saon, M. Picheny, and D. Na-
hamoo, “Direct acoustics-to-word models for english conver-
sational speech recognition,” arXiv preprint arXiv:1703.07754,
2017.

K. Irie, R. Prabhavalkar, A. Kannan, A. Bruguier, D. Rybach,
and P. Nguyen, “On the choice of modeling unit for sequence-to-
sequence speech recognition,” arXiv preprint arXiv:1902.01955,
2019.

V. Pratap, A. Hannun, Q. Xu, J. Cai, J. Kahn, G. Synnaeve,
V. Liptchinsky, and R. Collobert, “Wav2letter++: A fast open-
source speech recognition system,” in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). 1EEE, 2019, pp. 6460-6464.

S. Karita, N. Chen, T. Hayashi, T. Hori, H. Inaguma, Z. Jiang,
M. Someki, N. E. Y. Soplin, R. Yamamoto, X. Wang et al., “A
comparative study on transformer vs rnn in speech applications,”
in 2019 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU). 1EEE, 2019, pp. 449-456.

A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec
2.0: A framework for self-supervised learning of speech repre-
sentations,” Advances in Neural Information Processing Systems,
vol. 33, pp. 12449-12 460, 2020.

[15]

[16]

[17]

[18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

D. S. Park, Y. Zhang, Y. Jia, W. Han, C.-C. Chiu, B. Li, Y. Wu, and
Q. V. Le, “Improved noisy student training for automatic speech
recognition,” arXiv preprint arXiv:2005.09629, 2020.

Y. Zhang, J. Qin, D. S. Park, W. Han, C.-C. Chiu, R. Pang, Q. V.
Le, and Y. Wu, “Pushing the limits of semi-supervised learning for
automatic speech recognition,” arXiv preprint arXiv:2010.10504,
2020.

W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhut-
dinov, and A. Mohamed, “Hubert: Self-supervised speech rep-
resentation learning by masked prediction of hidden units,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 29, pp. 3451-3460, 2021.

S. Chen, C. Wang, Z. Chen, Y. Wu, S. Liu, Z. Chen, J. Li,
N. Kanda, T. Yoshioka, X. Xiao et al., “Wavlm: Large-scale self-
supervised pre-training for full stack speech processing,” IEEE
Journal of Selected Topics in Signal Processing, vol. 16, no. 6,
pp- 1505-1518, 2022.

A.v.d.Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748,
2018.

J. Lombart, A. Miguel, and E. Lleida, “Articulatory feature ex-
traction from voice and their impact on hybrid acoustic models,”
in Advances in Speech and Language Technologies for Iberian
Languages. Springer, 2014, pp. 138-147.

I. Vidials, D. Ribas, V. Mingote, J. Llombart, P. Gimeno,
A. Miguel, A. O. Giménez, and E. Lleida, “Phonetically-aware
embeddings, wide residual networks with time-delay neural net-
works and self attention models for the 2018 nist speaker recog-
nition evaluation.” in Interspeech, 2019, pp. 4310-4314.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The kaldi speech recognition toolkit,” in JEEE 2011 workshop
on automatic speech recognition and understanding, no. CONF.
IEEE Signal Processing Society, 2011.

Y. Sugawara, S. Shiota, and H. Kiya, “Convolutional neural net-
works without any checkerboard artifacts,” in 2018 26th Euro-
pean Signal Processing Conference (EUSIPCO). IEEE, 2018,
pp. 1317-1321.

R. Sennrich, B. Haddow, and A. Birch, “Neural machine
translation of rare words with subword units,” arXiv preprint
arXiv:1508.07909, 2015.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and 1. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

F. Casacuberta, R. Garcia, J. Llisterri, C. Nadeu, J. Pardo, and
A. Rubio, “Development of spanish corpora for speech research
(albayzin),” in Workshop on International Cooperation and Stan-
dardization of Speech Databases and Speech 1/0O Assesment Meth-
ods, Chiavari, Italy, 1991, pp. 26-28.

A. Moreno, B. Lindberg, C. Draxler, G. Richard, K. Choukri,
S. Euler, and J. Allen, “Speechdat-car. a large speech database
for automotive environments.” in LREC, 2000.

R. Justo, O. Saz, V. Guijarrubia, A. Miguel, M. 1. Torres, and
E. Lleida, “Improving dialogue systems in a home automation
environment,” in Ist International ICST Conference on Ambient
Media and Systems, 2010.

H. Van den Heuvel, K. Choukri, C. Gollan, A. Moreno, and
D. Mostefa, “Tc-star: New language resources for asr and slt pur-
poses.” in LREC, 2006, pp. 2570-2573.

R. Ardila, M. Branson, K. Davis, M. Henretty, M. Kohler,
J. Meyer, R. Morais, L. Saunders, F. M. Tyers, and G. Weber,
“Common voice: A massively-multilingual speech corpus,” arXiv
preprint arXiv:1912.06670, 2019.

D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and
noise corpus,” arXiv preprint arXiv:1510.08484, 2015.

M. A. . B. J. Diaz-Guerra, D., “gpurir: A python library
for room impulse response simulation with gpu acceleration,”
Multimed Tools Appl, vol. 80, no. 24, 2021. [Online]. Available:
https://doi.org/10.1007/s11042-020-09905-3



