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Abstract
This paper describes the Vicomtech-UPM submission to the
Albayzı́n-RTVE 2022 Speech to Text Transcription Challenge,
which calls for automatic speech transcription systems to be
evaluated in realistic TV shows. A total of 4 systems were built
and presented to the evaluation challenge, considering the pri-
mary system alongside three contrastive systems. Each system
was built on top of one different architecture, with the aim of
testing several state-of-the-art modelling approaches focused on
different learning techniques and typologies of neural networks.

The primary system used the self-supervised Wav2vec2.0
model as the pre-trained model of the transcription engine. This
model was fine-tuned with in-domain labelled data and the ini-
tial hypothesis re-scored with a pruned 4-gram based language
model. The first contrastive system corresponds to a pruned
RNN-Transducer model, composed of a Conformer encoder
and a stateless prediction network using BPE word-pieces as
output symbols. As the second contrastive system, we built
a Multistream-CNN acoustic model based system with a non-
pruned 3-gram model for decoding, and a RNN based language
model for rescoring the initial lattices. Finally, results obtained
with the publicly available Large model of the recently pub-
lished Whisper engine were also presented within the third con-
trastive system, with the aim of serving as a reference bench-
mark for other engines. Along with the description of the sys-
tems, the results obtained on the Albayzin-RTVE 2020 and
2022 test sets by each engine are presented as well.
Index Terms: albayzı́n evaluations, speech recognition, deep
learning, self-supervised learning, sequence-to-sequence.

1. Introduction
The Albayzı́n-RTVE 2022 Speech to Text Transcription Chal-
lenge calls for Automatic Speech Recognition (ASR) systems
that are robust against realistic TV shows. Currently, it is a no-
table trend that aims to approach ASR technology to automate
different applications in the media, such as subtitling or meta-
data generation for archive and information retrieval. The use
of Deep Learning algorithms in speech processing has made it
possible to introduce this technology in such complex scenar-
ios through the use of systems based on Deep Neural Networks
(DNNs), currently trained with a huge amount of (non-)labelled
acoustic data using different learning techniques.

During the last years, ASR systems have positively pro-
gressed in acoustic modelling with the integration of DNNs
to outperform traditional approaches [1]. More recently, new
attempts have been focused on building E2E ASR architec-
tures [2], which directly map the input speech signal to char-
acter sequences and therefore simplify training, fine-tuning and
inference [3, 4, 5, 6]. Nowadays, driven by the increasing
availability of data in major languages, novel approaches have
emerged on training big neural models through self-supervised
learning using hundreds of thousands of unlabelled acoustic
data [7]. Today, most of the efforts in the field seem to be fo-
cused on this last direction, given the availability of pre-trained
models and their high performance when being used as a feature
extractor or when they are fine-tuned with in-domain data [8].
Nevertheless, well-known architectures trained with hundreds
of thousands of multilingual annotated data that defy the perfor-
mance of the most novel approaches have emerged as well [9].

Our systems were built following different strategies, learn-
ing techniques and neural architectures. The primary system
was built on top of the self-supervised Wav2vec2.0 pre-trained
model [7], which was fine-tuned with in-domain labelled data
and helped by a pruned 4-gram language model for the final hy-
pothesis. The first contrastive system was composed of a pruned
RNN Transducer (RNN-T) E2E model [10], which integrated a
Conformer [11] encoder and a stateless (non-recurrent) predic-
tion network using Byte-Pair Encoding (BPE) [12] as output
symbols. The second contrastive system was constructed on the
Multistream CNN architecture [13] designed for robust acoustic
modelling, processing input speech with various temporal reso-
lutions by having stream-specific dilation rates to Convolutional
Neural Networks (CNNs) across multiple streams. The last con-
trastive system corresponds to the recently published Whisper
ASR engine [9], for which the publicly available Large model
was used to decode the results. In addition, some architectures
benefited from an initial acoustic segmentation provided by a
Voice Activity Detection (VAD) module, based on the GPVAD
convolutional recurrent model [14] trained with 5,000 hours
from the Audio Set [15] dataset.

The remainder of this paper is organised as follows: Sec-
tion 2 describes the corpora used for training; in Section 3 we
describe the speech transcription systems built for the challenge
and Section 4 presents the results on the Albayzin-RTVE 2020
and 2022 test sets. Finally, Section 5 draws the conclusions.



2. Corpora description
In this section, the different acoustic and text corpora employed
to train the systems are described in detail.

2.1. Acoustic corpus

The acoustic corpus was composed by annotated audio contents
from 9 different datasets, summing up a total of 1,927 hours and
47 minutes, as it is presented in Table 1.

Table 1: Duration of the speech segments for each dataset

dataset duration
RTVE2018 112 h. 30 min.

SAVAS 160 h. 58 min.
IDAZLE 778 h. 21 min.

RTVE Play 2020 168 h. 29 min.
RTVE Play 2022 296 h. 15 min.
RTVE YouTube 18 h. 6 min.
Common Voice 386 h. 48 min.

Albayzin 5 h. 33 min.
Multext 0 h. 47 min.
Total 1,927 h. 47 min.

The RTVE2018 dataset [16] was released by RTVE and
comprises a collection of TV shows drawn from diverse gen-
res and broadcast by the public Spanish National Television
(RTVE) from 2015 to 2018. This dataset originally comprised
569 hours and 22 minutes of audio with a high portion of im-
perfect transcriptions. Therefore, a forced-alignment was ap-
plied to recover only the segments transcribed with a high liter-
alness, obtaining a total of 112 hours and 30 minutes of nearly
correctly transcribed speech segments. The SAVAS corpus [17]
is composed of broadcast news contents in Spanish from 2011
to 2014 of the Basque Country’s public broadcast corporation
EiTB (Euskal Irrati Telebista), and includes annotated and tran-
scribed audios in both clear (studio) and noisy (outside) condi-
tions. The IDAZLE corpus is integrated by TV shows from the
EiTB broadcaster as well, and it comprises a more varied and
rich collection of programs of different genres and styles. TV
shows are also the contents which compose the RTVE Play 2020
and 2022 acoustic corpus, including programs broadcasted be-
tween 2018 and 2022 by RTVE. Additionally, we gathered tran-
scribed contents of RTVE from the YouTube platform1,2 as
well.

The Common Voice dataset [18] is a crowdsourcing project
started by Mozilla to create a free and massively-multilingual
speech corpus to train speech recognition systems. Finally, the
well-known and clean Albayzin [19] and Multext [20] datasets
were also included.

2.2. Text corpus

Regarding text data, different sources were employed, as it is
presented in number of words in Table 2.

A total of almost 575.2 million words were thus com-
piled and used to estimate the language models for decoding
and rescoring purposes. The Transcriptions text corpus cor-
responded to the text transcriptions of all audio contents used
to train the acoustic models. The RTVE2018 text corpus con-
tained all the text transcriptions and re-spoken subtitles included

1https://www.youtube.com/user/rtve/videos
2https://www.youtube.com/c/RTVEArchivo/videos

Table 2: Description of the text corpus

corpus #words
Transcriptions 20,299,703

RTVE2018 56,628,710
RTVE Play 241,330,497

Generic news 76,276,831
RTVE news 180,611,376

Total 575,147,117

within the RTVE2018 dataset, whilst the RTVE Play corpus was
integrated by subtitles taken from the “RTVE Play”3 web portal,
and the Generic news corpus incorporated news gathered from
digital newspapers in the Internet. Finally, the RTVE news cor-
pus was composed of news collected from the RTVE website4.

3. Systems description
This section describes each of the neural architectures built for
the Albayzı́n-RTVE 2022 S2T Transcription Challenge.

3.1. Wav2vec2.0 based system

Wav2vec2.0 [7] is a self-supervised E2E architecture based on
a CNN feature extractor and Transformer layers for the en-
coder and decoder. The Wav2vec2.0 model maps speech audio
through a multi-layer convolutional feature encoder f : χ → Z
to latent speech representations z1, . . . , zT , which are fed into
a Transformer network g : Z → C to output context repre-
sentations c1, . . . , cT . These context representations are then
quantised to q1, . . . , qT to represent the targets in the self-
supervised learning objective [7]. The feature encoder contains
seven blocks and the temporal convolutions in each block in-
clude 512 channels with strides (5, 2, 2, 2, 2, 2, 2) and kernel
widths (10, 3, 3, 3, 3, 2, 2). The Transformer used was com-
posed by 24 blocks, a model dimension of 1024, an inner di-
mension of 4096 and a total of 16 attention heads.

As the main baseline Wav2vec2.0 model, for this work
we selected the pretrained Wav2Vec2-XLS-R-1B model [21],
which corresponds to one of the different versions of the Face-
book AI’s XLS-R multilingual model [22] composed by one
billion of parameters. This model was initially trained through
self-supervised learning methods using 436k hours of unla-
belled speech data in 128 languages. This data was collected
from the VoxPopuli [23], MLS [24], CommonVoice [18], BA-
BEL5 , and VoxLingua107 [25] corpora.

This Wav2Vec2-XLS-R-1B pre-trained model was then
adapted with 300 hours of in-domain data from the RTVE2018
and RTVE Play 2020 datasets during 50,000 updates, in which
the CTC layer was trained only during the initial 10, 000 steps.
The batch-size was set to 50 and the model was trained with
a tri-stage learning rate policy, in which after the 10% of the
warm-up updates, the learning rate was set to 8 · 10−6 during
the following 40% of the updates, then linearly decaying for the
rest of the training. Finally, a pruned 4-gram language model,
trained with all the corpora detailed in Table 2 except RTVE
news, was used for decoding. We employed a Bayesian Opti-
misation procedure to find the best decoding hyper-parameters
over the dev partition of the Albayzin-RTVE 2020 dataset. The

3https://www.rtve.es/play/
4https://www.rtve.es/
5Corpus collected under the IARPA BABEL research program



decoding was performed using a beam-size of 1024, a language
model weight of 0.95, a word score weight of 1.27 and a silence
weight of −0.18.

3.2. RNN-Transducer based system

RNN-Transducer framework has become very popular in the
Industry due to its high accuracy in online and streaming appli-
cations [10]. Nevertheless, due to its architecture, its loss func-
tion can be relatively slow to compute, making use of a high
GPU memory when the vocabulary size is too large. In order to
accelerate training, we estimated a pruned RNN-T [10], which
reduces the memory usage and speeds up the training process.

The inputs to the neural network were 80-dimensional log
Mel-filter banks with a processing window size of 25 ms and
a window shift of 10 ms. Speed perturbation with 0.9 and 1.1
factors and SpecAugment [26] techniques were also applied to
make the training more robust, whilst the model outputs were
500 word-pieces with BPE as the segmentation algorithm. The
training of the model was configured for 40 training epochs with
an initial learning rate of 0.003, which started decaying after
epoch 6. We used Noam optimiser to learn parameters and it
was estimated over all the acoustic corpora shown in Table 1.

The encoder of the RNN-T model was a Conformer [11]
with 18 layers and 8 self-attention heads per layer. The atten-
tion dimension and the feed-forward dimension were 512 and
2048, respectively. We employed a stateless decoder [27] as the
prediction network, which consisted of an embedding layer with
a dimension of 512, followed by a 1-D convolutional layer with
a kernel size of 2. The decoding was performed on the speech
segments generated by our VAD module, applying a beam-size
of 16 and without using any external language model.

3.3. Multistream-CNN based system

The Multistream-CNN based ASR engine was built on top of
the Kaldi toolkit [28] through the nnet3 DNN setup. The acous-
tic model is composed by an initial set of five 2D-CNN lay-
ers in charge of processing the given input speech frames dy-
namically augmented through the SpecAugment [26] technique.
Each embedding vector outputted from the single-streamed set
of CNN layers in each time step is then inserted as the input
of each of the three stacks of TDNN-F layers, combined with
a dilation rate configuration of 6-9-12. Each stack is com-
posed of 17 TDNN-F layers, with an internal cell-dimension of
512, a bottleneck-dimension of 80 and a dropout schedule of
’0,0@0.20,0.5@0.5,0’. The number of training epochs
was set to 6, with an initial and final learning rates of 10−3

and 10−5, respectively, and a mini-batch size of 64. The input
vector corresponded to a concatenation of 40-dimensional high-
resolution MFCC coefficients, augmented through speed (using
factors of 0.9, 1.0, and 1.1) [29] and volume (with a random
factor between 0.125 and 2) [30] perturbation techniques, and
the appended 100 dimensional i-Vectors. The acoustic model
was trained with all the acoustic corpora described in Table 1.

This system included a non-pruned 3-gram language model
for decoding and a 4-gram pruned RNNLM model for lattice-
rescoring following the work presented in [31]. The 3-gram
LM was trained with texts coming from the Transcriptions,
RTVE2018, RTVE Play and Generic News corpora presented
in Table 2, and the 4-gram pruned RNNLM model was esti-
mated adding the RTVE news text corpus. In order to gain effec-
tiveness in rescoring, the decoding was performed on the speech
segments previously generated by our VAD module.

3.4. Whisper based system

Whisper [9] is a recently proposed ASR model that lever-
ages a large amount of weakly labelled audio data to train
a multilingual transcription model. The architecture is based
on the well-known encoder-decoder Transformer sequence-to-
sequence model [32]. This network includes an acoustic en-
coder fed with log-Mel spectrograms, whose outputs are used
for conditioning an auto-regressive text decoder via cross-
attention mechanisms. The network is trained with 680k hours
of speech data, where only 2.6% represents Spanish audio.
Among the released models, we chose the Large version, which
has a total of 1.55B parameters.

For long-audio decodings, the model works with 30-second
audio chunks, and outputs time-coded text segments. The de-
coder is pre-conditioned on the previous predictions to keep
consistency among segments, with the risk that the network is
prone to loop errors given the same results regardless of the en-
coded audio features. This phenomenon is especially critical in
audios with long non-speech segments. To alleviate this issue,
we looked at the text outputs of the decoding. For transcrip-
tions where more than 20% of segments were text repetitions,
we remade the decoding by first segmenting the audio through
our VAD module, discarding non-speech segments longer than
2 seconds. The decoding process of the rest of the speech seg-
ments was performed by resetting the pre-condition of the text
decoder. In addition, we sought for text phrases repeated three
times or more, keeping only one appearance. Garbage outputs
such as “subtitle” or “subscribe” were deleted as well. Finally,
the output was de-normalised by removing the capitalisation
and punctuation marks.

4. Results and resources
In Table 3, the total WER values over the Albayzı́n-RTVE 2020
and 2022 test sets are presented for each submitted system.

Table 3: Total WER results per system on the Albayzin-RTVE
2020 (WER 20) and 2022 (WER 22) test sets

type system WER 20 WER 22
P VICOM-UPM Wav2vec2.0 13.77 15.30

C1 VICOM-UPM RNN-T 14.32 14.78
C2 VICOM-UPM Multistream-CNN 17.10 17.29
C3 VICOM-UPM Whisper-Large 12.15 14.87

As it can be observed in Table 3, the Whisper based sys-
tem obtained the best WER on the Albayzin-RTVE 2020 test
set, followed by the Wav2vec2.0 based system, which achieved
a very competitive 13.77 of total error rate. The other two sys-
tems reached worse results; 14.32 and 17.10 for the RNN-T
and Multistream-CNN based systems, respectively. These val-
ues were definitive to select the primary and contrastive systems
for the 2022 challenge. It is worth mentioning that considering
that the engine and recognition models of the Whisper engine
were not developed and/or adapted by the authors, we decided
to leave this engine as the last contrastive system.

On the other hand, if we observe the results obtained by
these systems on the Albayzin-RTVE 2022 test set, we realise
that the RNN-T based system managed to generalise better for
the new contents, obtaining the best results with a very inter-
esting 14.78 of total error rate. This WER was even better
than the one obtained by the Whisper engine, which reached
a 14.87 with the Large model after applying the decoding and



cleaning strategies explained in subsection 3.4. Our primary
system based on the Wav2vec2.0 pre-trained model scored the
third position within our submitted systems with a 15.30 of
WER, whilst the Multstream-CNN based system reached a per-
formance similar to that obtained with the 2020 test set.

In Table 4, the total error rates obtained per system at word
level for each TV show in the 2022 test set are presented.

Table 4: Total WER of the ASR systems for each TV program of
the Albayzı́n-RTVE 2022 test set. The name of the programs are
presented as acronyms.

TV program P C1 C2 C3
3x4 12.60 13.37 33.58 14.78
AG 7.70 6.72 6.74 6.16

APB 63.15 60.24 52.14 67.05
AT 12.78 11.65 13.68 9.60

ATE 10.50 9.07 10.96 7.92
CA 18.12 19.09 21.12 21.30

CCA 12.75 9.51 12.08 11.93
CO 10.12 7.89 8.68 9.88
CPE 17.14 13.46 16.66 14.57
EC 13.90 14.32 15.64 13.45
ED 14.09 14.21 16.11 13.36
EE 27.87 25.16 29.05 22.20

ERA 18.99 19.88 21.17 18.80
GR 24.79 29.02 32.07 31.08
IU 23.16 19.79 23.21 19.50

JYS 11.51 12.04 10.69 11.74
NN 10.70 10.20 13.01 10.49
RD 18.18 23.30 23.81 20.84

SYG 10.35 10.24 10.33 10.07
TO 23.57 20.61 23.34 24.91
YR 22.36 25.33 28.79 21.48

Global 15.30 14.78 17.29 14.87

As it can be observed in Table 4, the systems perform con-
sistently along all the contents in the Albayzı́n-RTVE 2022 test
set considering the characteristics and difficulty of each content.
It is interesting to observe how the RNN-T based system (C1)
obtained the best total WER even though the Whisper based
system (C3) achieves better results in more TV shows (10) than
the former (6).

In general, the behaviour of the systems regarding the con-
tent profiles is as expected. In those programs with cleaner
speech, the WER decreases significantly compared to other pro-
grams with adverse acoustic conditions, overlapping or spon-
taneous speech. More specifically, in TV shows such as AG
(Agroesfera), ATE (Ateneo), CCA (Conversatorios en Casa
América), JYS (Jara y Sedal) or SYG (Saber y Ganar) with
more controlled acoustic conditions and many segments with
formal and well-structured speech, the error rates are below the
13% border for all the systems, which demonstrates the good
performance of the 4 systems in this type of contents. In con-
trast, in more complicated TV shows like EE (Entrevistas en es-
tudio), GR (Grasa), TO (Toros) or YR (Yrreal), which include
more segments with spontaneous and acted speech, acoustically
adverse conditions and overlapping, the results are between
20% and 30% of WER, as expected. Finally, the worse results
were achieved with the APB (A pedir de Boca) content, which
includes very poor acoustic conditions. Interestingly, it was the
C2 system with the worst overall WER which achieved the best
result with this program.

In terms of decoding, the transcription hypotheses were
computed on two different servers and GPU acceleration cards.
The RNN-T, Multistream-CNN and Whisper based systems
were run on an Intel Xeon CPU E5-2683v4 2.10 GHz 7xGPU
server with 256 GB DDR4 2400 MHz RAM memory, using an
NVIDIA Titan RTX 24 GB graphics acceleration card. On the
other hand, the decoding of the Wav2vec2.0 based system was
performed on an AMD Ryzen 7 5800X 3.8 GHz server with 128
GB DDR4 3200 MHz RAM memory, using an NVIDIA RTX
3090 24GB graphics acceleration card.

The Table 5 presents the processing time and resources
needed per system to decode the 54 hours and 2 minutes of me-
dia contents from the Albayzı́n-RTVE 2022 test set.

Table 5: Processing time and computational resources needed
by each submitted system

system RAM
(GB)

CPU
cores

GPU
(GB) Time

VICOM-UPM Wav2vec2.0 18.5 1 8.5 7.3h
VICOM-UPM RNN-T 11.6 3 5.6 1.9h
VICOM-UPM Multistream-CNN 11.9 1 5.7 39.9h
VICOM-UPM Whisper-Large 8.6 1 11.2 21.7h

As it is shown in Table 5, the Wav2vec2.0 based system
was the engine that occupied the most RAM memory (18.5
GB), mainly due to the 1 billion parameters of the pre-trained
model. Nevertheless, it was the second fastest system in decod-
ing. It took 7.3 hours to decode the whole test set. Within the
4 submitted systems, the RNN-T based system was the fastest
transcription engine. It required only 1.3 hours to generate the
hypotheses of the 54 hours and 2 minutes of the test set using
3 CPU cores, which supposed a very competitive Real-Time
Factor (RTF) of 0.035. Despite the good quality performance
offered by the Whisper based engine, the RTF of this system
grew up to 0.40 using the Large model and 1 CPU core and
1 acceleration card only. Finally, the Multistream-CNN based
system was the engine with the worst results in terms of quality
and performance.

5. Conclusions
In this work, the 4 systems submitted by the Vicomtech-UPM
team to the Albayzı́n-RTVE 2022 S2T Challenge were pre-
sented. Although the best results on the previous Albayzı́n-
RTVE 2020 test set were achieved by the Large model of the
Whisper based system, the RNN-T based model reached the
lowest WER on the 2022 test set with a very interesting and
competitive 14.78 of total word error rate. Furthermore, this
system was the fastest engine generating the recognition hy-
potheses, needing less than 2 hours to process more than 54
hours of content.

As future work, the authors plan to continue exploring the
possibilities of the RNN-T based system, mainly to be applied
in a more challenging real-time or streaming domain. Besides,
it would be interesting to fine-tune the Large model of the Whis-
per based system in order to be adapted to the application do-
main, in addition to continuing to control unexpected recogni-
tion outputs. Regarding the Wav2vec2.0 based systems, new
training configurations will be studied, including the possibil-
ity of improving the rescoring process with more sophisticated
neural language models.
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