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Abstract
This paper describes Telefónica I+D’s participation in the
IberSPEECH-RTVE 2022 Speech-to-Text Transcription Chal-
lenge. We built an acoustic end-to-end Automatic Speech
Recognition (ASR) based on the large XLS-R architecture. We
first trained it with already aligned data from CommonVoice.
After we adapted it to the TV broadcasting domain with a
self-supervised method. For that purpose, we used an iterative
pseudo-forced alignment algorithm fed with frame-wise charac-
ter posteriors produced by our ASR. This allowed us to recover
up to 166 hours from RTVE2018 and RTVE2022 databases. We
additionally explored using a transformer-based seq2seq trans-
lator system as a Language Model (LM) to correct the tran-
scripts of the acoustic ASR. Our best system achieved 24.27%
WER in the test split of RTVE2020.

Index Terms: end-to-end model, pseudo-forced alignment, do-
main adaptation, automatic speech recognition

1. Introduction
This paper describes Telefónica I+D’s participation in the
IberSPEECH-RTVE 2022 Speech-to-Text Transcription Chal-
lenge. We explain the technical details of the datasets and sub-
systems that have been used for our submission.

When it comes to specific domains or low-resource tasks,
end-to-end systems tend to underperform conventional ap-
proaches [1]. Given that domain-specific datasets are scarce,
costly, and human-time-consuming, techniques to tackle the
lack of high-quality data have been explored. A common ap-
proach is to retrieve audio-to-text alignments from available au-
dio data that have low-quality text references [2, 3, 4, 5, 6].
Some of these systems use a post-filtering process based on
a confidence score to filter-out mistaken references. More-
over, there is recent work that uses massive datasets by relax-
ing the human-labeled requirement (weak supervision), achiev-
ing impressive zero-shot behaviors [7]. Another line of action
is the use of unlabeled audio. On the one hand, with semi-
supervised methods by pseudo-labeling of unlabeled audio [8].
On the other hand, unsupervised pre-training methods by learn-
ing speech representations that are subsequently used in a con-
crete task (supervised). Requiring less quantity of labeled data
to achieve state-of-the-art results [9, 10, 11].

In the same spirit, trying to overcome the scarcity of
datasets that pair audio and text, there is work using external
elements that works directly at the text level. Concretely, in
[12, 13] the use of machine translation models to correct ASR
outputs has been proven to improve the performance in terms of
Word Error Rate (WER). Similarly, distilling knowledge from
the language representation model BERT, during training, also
improves the ASR performance [14].

Considering these ideas, we built an acoustic end-to-end
ASR model based on the XLSR-53 architecture, which was
pre-trained with 56k hours of unlabeled audio [10]. We fine-
tuned this model to the Spanish language with the utterance-
level aligned data from CommonVoice. Then, we used the self-
supervised method presented in [6] to adapt the ASR to the TV
broadcast domain. It consists of using the trained end-to-end
acoustic ASR to retrieve data from RTVE2018 and RTVE2022.
This process is repeated several times, as more data is aligned
when the model is better adapted to the target domain. Addi-
tionally, we fine-tuned a machine translation model from Cata-
lan to Spanish to correct ASR output (LM).

Using the same ASR, the difference between our four sub-
missions lies in the use of different audio segments and post-
processing of the ASR’s hypothesis with the LM. We used both,
segments coming from a Voice Activity Detector (VAD) model
(c1 VAD) and segmentation with sliding window without over-
lap (c3 W10). Moreover, we analysed the impact of the LM in
both cases (c2 W10LM and p VADLM).

2. Databases
The Albayzin 2022 Speech-to-Text Transcription Challenge
provided the databases from previous evaluations: RTVE2018
[15] and RTVE2020 [16]; together with newly released data
in RTVE2022 [17]. RTVE2018 is a collection of shows from
public Spanish Television (RTVE) broadcasted during the years
2015 to 2018. It has 569 hours of unaligned audio, partitioned
into 4 different subsets: train, dev1, dev2, and test. The train
split consists of 460 hours of audio with closed captions from
TV shows. The dev1, dev2, and test splits contain 57, 15, and
41 hours of human-revised transcripts, respectively. Whereas
RTVE2020 is a collection of shows from RTVE during the years
2019 to 2020. It includes a test split with 55 hours of human-
transcribed audio. RTVE2022 is a collection of diverse audio
materials from the 60’s to the present. It has 223 hours of audio
split into two partitions: train and test. The train partition has
168 hours of automatically transcribed audio, and is automati-
cally aligned. The test partition consists of 55 hours of diverse
audio material.

We additionally used for this work the Spanish Common-
Voice [18] database, wich comprises more than 200 hours of
reading speech, which is utterance-level aligned and validated
by volunteers. Table 1 presents the amount of data of the two
versions used in this work.

2.1. Splits

We created three splits from the RTVE2018 database. We
named them train, dev1 and dev2; and they are used to train
the ASR and the LM, validate ASR training, and validate



Table 1: Number of hours and sentences for the different splits
of the Spanish CommonVoice datasets.

Split version 6.1 version 7.0
hours samples hours samples

train 236.9 161.8k 291.2 196.0k
dev 25.2 15.1k 25.8 15.3k
test 25.9 15.1k 26.4 15.3k

total 288 192k 343.4 226.6k

and test the LM training, respectively. Table 2 presents how
we constructed our splits. We used show-based criteria to
avoid speaker repetition between splits. Similarly, the show
type and duration were also considered. Additionally, the full
RTVE2022 database has been used for training and RTVE2020
was used to compare our results with the previous evaluation.

Table 2: Simplified information about the shows and splits from
RTVE2018 database.

Show Type Hours Split

LA24H news 16 dev1
EC reports 13 train
LT24HTer interview 27 train
AFI documentary 11 dev2
LM news 228 train
SG contest 29 train
AV contest 6 train
DH contest 10 train
LT24HEnt interviews 5 dev1
Millenium debate 19 dev1
LN24H interviews 33 train
20H news 41 train
CA news 17 train
AP news 70 train
AG news 38 train
LT24HEco economy 4 dev2
LT24HTiempo weather 2 dev1

2.2. Alignments

After exploring the provided databases, we noticed that even
human-revised transcripts present differences with the spoken
content. This is accentuated in the train split of RTVE2018
where the text references provided are subtitles. There are sev-
eral reasons that justify this. First, the standards used in Eu-
rope follow some restrictions related, for instance, to the read-
ing speed, time on the screen of transcriptions or the leading-in
time due to the natural eye movements [19]. Second, the kind of
show affects the speech and transcription mismatch, such as in
sports shows, where speaking velocity may substantially differ
from subtitles velocity. Finally, spontaneous speech as in in-
terviews or discussions may present interruptions, repetitions,
revisions, and/or restarts [20]. Of course, the mechanism used
to generate transcriptions also affects the result.

We decided to tackle audio-to-text mismatches by using the
iterative pseudo-forced alignment algorithm presented in [6],
which uses the Connectionist Temporal Classification (CTC)
paths produced by an end-to-end ASR to get alignments. In
this method, several combinations of audio and text are aligned

until finding the best possible match. It is an anchor-based ap-
proach, so only the last aligned utterance within the analysis
window is taken in to account to accept/reject alignments. Thus,
mismatched audio and text alignments between anchors can be
accepted, not affecting the remaining file alignment. The algo-
rithm produces a confidence score for each aligned utterance,
we used it to filter out the alignments by selecting a threshold
(−1.0 in the log space). Table 3 presents the amount of data
recovered by this method along iterations. As the ASR is better
adapted to the acoustic domain, it is capable of recovering more
data domain data.

Table 3: Data recovery, in hours, from RTVE databases.

Iteration RTVE2018 RTVE2022
train dev1 dev2 test train

Original 460 55 15 39 168

1st-pass - 18 5 - -
2nd-pass 74 30 9 21 32

Recovered 16% 55% 60% 54% 19%

3. Automatic Speech Recognition
3.1. Voice Activity Detection

A VAD model is used in evaluation data to filter non-speech
segments. It consists of a dense neural network of four layers
with 400 neurons each and two outputs. The network is fed
with 15-dimensional Mel-filter bank features augmented with 3
additional Kaldi pitch coefficients [21].

3.2. End-to-end acoustic ASR

We constructed an end-to-end acoustic model based on the large
XLS-R architecture. It consists of a convolutional feature en-
coder, followed by a transformer with 24 blocks with an inner
dimension of 4096 and a model dimension of 1024. Concretely,
we used the XLSR-53 model, which was pre-trained with 56k
hours of audio in 53 languages [10], and then fine-tuned in the
Spanish CommonVoice dataset (version 6.1). We added two lin-
ear layers randomly initialized on top of the Wav2Vec2.0 archi-
tecture. The resultant model counts for more than 300M train-
able parameters and classifies among 38 characters, including
unaccented letters between a-z, the accented vowels á, é, ı́, ó,
ú, and the diaeresis on the vowel u(ü). Finally, the transcription
is obtained using simple greedy decoding from the frame-wise
character posteriors that the model produces.

3.2.1. Training

Based on the SpeechBrain’s CTC recipe [22], utterance audio
length is limited to up to 10 seconds. Moreover, signals are or-
dered by length, using shorter clips in the first batches of the
epoch, and longer ones at the end. Regarding data augmenta-
tion, the unique technique used is SpecAugment [23]. Further-
more, the model is optimized minimizing only a CTC loss, and
the learning rates (LR) are updated using the NewBob sched-
uler [24]. Additionally, we manually restarted the LR at some
points in training. Finally, the best checkpoint in terms of WER
is stored. The ASR has been trained using a batch size of 3,
setting the starting LRs for the linear layers and Wav2Vec2.0 of
1.0 and 10−5, respectively.



The model was first trained during 150 epochs with Com-
monVoice 6.1, after, during 15 epochs with CommonVoice 7.0.
Then, we started the iterative self-supervised process of align-
ing data of RTVE databases with the same ASR and using that
data to continue training it. We repeated this process several
times, as when the model is better adapted to the broadcast TV
domain it is capable of aligning more data from RTVE2018 and
RTVE2022.

3.3. Machine translation LM

Additionally, we explored the use of a neural machine transla-
tion system as an external LM to correct our acoustic-only ASR
hypothesis. This has been previously explored in [12, 13], given
that the machine translation model is a strong candidate to learn
the type of errors the ASR produces and correct them. Con-
cretely, we used a transformer-based encoder-decoder model
that translates from Catalan to Spanish 1. We did so because
the model knows how to produce correct Spanish sentences
at the output. It was originally trained using the MarianMT
framework [25] with the Open Parallel Corpus (OPUS) [26] by
the Language Technology Research Group at the University of
Helsinki.

3.3.1. Data generation

In order to fine-tune the machine translation model for the
downstream task (ASR correction) we need to generate a par-
allel corpus with source and target sentences. We explored to
ways of generating that data. The first one consist on manually
generating errors in the reference text. At the word-level, we
modeled deletions with the probability of our ASR to delete
words in the RTVE2020 test: deletions/words = 0.12. At
character-level, we produced three types of errors:

1. typos: simple remove, insert, substitute any character.
Similarly, we modelled character swapping.

2. misspelling: homphonic mistakes as the replacement of
”que” by ”ke”, ”v” by ”b” or ”o” by ”ho”.

3. repetitions: simple repeat a character.

Some examples of the manually generated mistakes are pro-
vided in Table 4.

Table 4: Manual mistakes produced to fine-tune the machine
translation model.

Source Target

ya justifia el aswnto ya justifica el asunto

[deletion] por veinte
euros no era

abono por veinte euros
no era

el scetor se ha marc-
dao piara dos mil vein-
ticiqnco

el sector se ha mar-
cado para dos mil vein-
ticinco

The second way of generating source and target sentences
was the usage of checkpoints at different points during ASR
training. We used four checkpoints to process all aligned utter-
ances and get ASR hypothesis. This was used as source data
and text reference was used as target data. In Table 5 we show
some examples this data. Of course, the ASR also produces the

1Model downloaded from HuggingFace: https://
huggingface.co/Helsinki-NLP/opus-mt-ca-es.

correct transcription for many utterances. This was also used to
teach the model not to change the text when it is correct.

Table 5: ASR mistakes produced to fine-tune the machine trans-
lation model.

Source Target
han puesto nombres y
apellidos rog

han puesto nombres y
apellidos roig

que itana tenga que me-
terla c mano en una caja
oscura

que aitana tenga que me-
ter la mano en una caja
oscura

For the manual mistakes, we used all the text references
available from train splits counting a total of 427k sentence
pairs. In the case of ASR mistakes, we used aligned data as
we have to process the audio with the ASR to get the hypothe-
sis. From RTVE2018 and RTVE2022 train splits, we have more
than 146k sentences aligned. As a result of processing the data
with four checkpoints, we have a total of 587k sentences. For
validation and testing, we divided dev2 into two parts.

3.3.2. Fine-tuning

The model was fine-tuned for a maximum of 20 epochs using
early stopping with a patience of 5 epochs. We only store the
best model in terms of bilingual evaluation understudy (BLEU)
metric in validation set (sub-set from dev2). Additionally, we
used a batch size of 60 sentences and a starting learning rate of
10−4 scheduled with a cosine annealing scheduler [27].

4. Results
4.1. Audio segments

For generating the results we explored two approaches to seg-
menting the audio that the ASR processes. First, we used the
VAD explained in section 3.1 to generate speech segments. Ad-
ditionally, we segmented with a sliding window without over-
lap. In this second case, we explored several window sizes. In
Figure 1 we present how the window size affects deletions, in-
sertions, and substitutions. While reducing the window size,
we decrease word deletions. Nevertheless, when the window
is too small mid-word cuts cause the growth of the insertions
and substitutions. Best results are obtained while using a 10
seconds-length audio window.

Window size

 0

 50K

 100K

 150K

100s 50s 30s 20s 10s 5s

Deletions Insertions Substitutions

Figure 1: Deletions, insertions and substitutions across segmen-
tation window size used to get transcriptions.

https://huggingface.co/Helsinki-NLP/opus-mt-ca-es
https://huggingface.co/Helsinki-NLP/opus-mt-ca-es


4.2. Submitted systems

We submitted four systems, one primary and three contrastive.
The primary system (p) uses VAD segments and corrects the
output with the LM. The first contrastive system (c1) just uses
the VAD segments. On the other hand, the second contrastive
system (c2) uses 10 seconds-length window segmentation and
corrects the output with the LM. Finally, the third contrastive
system (c3) generates the output using a 10 seconds-length seg-
mentation window size.

4.3. Evaluation results

The results are presented in Table 6. As expected, filtering non-
speech segments by using a VAD is better than using segmenta-
tion with a sliding window, it improves by a 1.8% the WER. Ad-
ditionally, while using segments generated by a sliding window,
the LM always improves the ASR results, as the ASR tends to
generate non-sense outputs when processing non-speech audios
such as opening/ending music. The best system in RTVE2020
test is VADLM, which uses VAD segments and processes the
output with the LM, it achieves 24.27%WER. However, in the
RTVE2022 test, the use of the LM slightly degrades the WER
by 0.05%, and the best results are achieved using only VAD
segments, 23.45% WER.

Table 6: Resultant word error rate of the submitted systems in
RTVE2020 and RTVE2022.

System Submission RTVE2020 RTVE2022

W10 c3 26.68 25.25
W10LM c2 25.70 24.87
VAD c1 24.86 23.45
VADLM p 24.27 23.50

The results achieved by the LM in our test sub-split from
dev2 are presented in 7. While training uniquely with manu-
ally generated mistakes or with ASR’s mistakes, the resultant
model degrades the character error rate (CER) and WER and
slightly improves the BLEU. Nevertheless, when training with
both manual mistakes and ASR mistakes we obtain improve-
ments in CER, WER, and BLEU. Additionally, to clarify the
impact of the LM, in Table 8 we present a challenging example
of the ASR caused by the ending music of a show. We can ob-
serve that both types of segmentation lead to mistaken outputs.
Here the use of the LM provides at least correct Spanish out-
puts. Nevertheless, on some occasions, the LM is not capable
to produce the right results. We believe that the LM can be im-
proved by using more augmented data at the text level, but also
by making the ASR face more challenging acoustic conditions
while generating hypothesis: mixing the audio with background
noise.

Table 7: CER, WER and BLEU of the LM with respect of the
data used at training.

Data CER% WER% BLEU Sentences

Baseline 3.61 4.13 80.36 -

Manual 3.94 4.50 80.52 427k
Checkpoints 3.64 4.20 82.21 587k
All 3.55 4.10 85.36 1014k

Table 8: Ending transcription of CN-20181208b file obtained
with our four systems compared with text reference.

System Output

W10 delante derecha delante dtrás cundos tres e

W10LM delante derecha delante detrás cuando
estés en tres e

VAD delante derecha delante detrás undos tress

VADLM delante derecha delante detrás un dos tres

Reference delante derecha delante detrás un dos tres

Finally, it is important to mention that the ASR model has
not stopped improving. In Figure 2 the improvement process
is depicted, best results are obtained while using the biggest
amount of domain data in training, for the moment we only used
166 hours. We strongly believe that there is still a margin for
improvement by simply performing more iterations of the self-
supervised method for domain adaptation. Or simply by using
more complex decoding.

Epochs

W
E

R
 (%

)

R
TV

E
 tr

ai
n 

ho
ur

s

25,00

30,00

35,00

40,00

45,00

50,00

0

25

50

75

100

125

150

175

0 15 35 55 75

WER(W=20) WER(W=30) RTVE training hours

Figure 2: WER across training epochs. In epochs 35 and 55,
LR was restarted to 1.0 for the linear layers and 10−5 for
Wav2Vec2. W stands for the length in seconds of the segmenta-
tion window used to get transcriptions.

5. Conclusions
In this manuscript, we presented the description of the four
systems we submitted in the Albayzin 2022 Speech-to-Text
Transcription Challenge. We built an acoustic end-to-end ASR
model based on the XLSR-53 architecture, that was pre-trained
with unlabeled audio. We first fine-tuned this model to the
Spanish language with CommonVoice and after adapted it to
the TV broadcast domain with a self-supervised method. This
technique uses an iterative pseudo-forced alignment algorithm
based on the CTC paths and allowed us to recover 166 hours
from RTVE2018 and RTVE2022. In addition, we explored the
use of a machine translation model to correct the ASR output
(LM). For that purpose, we fine-tuned a model that originally
was used to translate from Catalan to Spanish. In our four sub-
missions, we measure the impact of two types of segmentation
and the use of the LM. Our best results are 24.27% and 23.45%
WER on RTVE2020 and RTVE2022 test sets respectively.
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